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Preface

JavaScript is a client-side scripting language that allows web page authors to develop interactive web pages 
and sites. Although JavaScript is considered a programming language, it is also a critical part of web page 
design and authoring. This is because the JavaScript language enables web developers to add functionality 
directly to a web page’s elements. The language is relatively easy to learn, allowing non-programmers to quickly 
incorporate JavaScript functionality into a web page. In fact, because it is used extensively in the countless 
web pages that are available on the World Wide Web, JavaScript is arguably the most widely used program-
ming language in the world.

JavaScript, Seventh Edition, teaches web page development with JavaScript for students with little programming 
experience. Although it starts with an overview of the components of web page development, students using 
this book should have basic knowledge of web page creation, including familiarity with commonly used HTML  
elements and CSS properties. This book covers the basics of ECMAScript Edition 11 (June, 2020), which is 
supported by all modern browsers. This book also covers advanced topics including object-oriented program-
ming, the Document Object Model (DOM), touch and mobile interfaces, and Fetch. The HTML documents in 
this book are written to HTML5 standards, with some XHTML-compatible element syntax. After completing 
this course, you will be able to use JavaScript to build professional quality web applications.

The Approach
This book introduces a variety of techniques, focusing on what you need to know to start writing JavaScript 
programs. In each chapter, you perform tasks that let you use a particular technique to build JavaScript 
programs. The step-by-step tasks are guided activities that reinforce the skills you learn in the chapter and 
build on your learning experience by providing additional ways to apply your knowledge in new situations. 
In addition to step-by-step tasks, each chapter includes objectives, short quizzes, a summary, key terms with 
definitions, review questions, and reinforcement exercises that highlight major concepts and let you practice 
the techniques you’ve learned.

Course Overview
The examples and exercises in this book will help you achieve the following objectives:

❯❯ Use JavaScript with HTML elements

❯❯ Work with JavaScript variables and data types and learn how to use the operations that can be 
performed on them

❯❯ Add functions and control flow within your JavaScript programs

❯❯ Trace and resolve errors in JavaScript programs

❯❯ Write JavaScript code that controls the web browser through the browser object model

❯❯ Use JavaScript to make sure data was entered properly into form fields and to perform other types of 
preprocessing before form data is sent to a server

❯❯ Create JavaScript applications that use object-oriented programming techniques

❯❯ Manipulate data in strings and arrays

❯❯ Save state information using hidden form fields, query strings, cookies, and Web Storage

❯❯ Incorporate touchscreen support and mobile capabilities in web applications

❯❯ Dynamically update web applications with Ajax and Fetch

❯❯ Build a web application using the jQuery library
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Prefacexii

JavaScript, Seventh Edition, presents twelve chapters that cover specific aspects of JavaScript programming. Chapter 1 
discusses basic concepts of the World Wide Web, reviews HTML documents, and covers the basics of how to add 
JavaScript to web pages. How to write basic JavaScript code, including how to use variables, data types, expressions, 
operators, and events, is also discussed in Chapter 1. This early introduction of key JavaScript concepts gives you a 
framework for better understanding more advanced concepts and techniques later in this book, and allows you to work 
on more comprehensive projects from the start. Chapter 2 covers functions, data types, and how to build expressions. 
Chapter 3 explains how to store data in arrays and how to use structured logic in control structures and statements. 
Chapter 4 provides a thorough discussion of debugging techniques, including how to use the browser consoles inte-
grated into all modern browsers. Chapter 5 teaches how to manipulate the structure of a web document by creating 
element nodes and web page overlays. Chapter 6 explains how to use JavaScript to make sure data was entered prop-
erly into form fields and how to perform other types of preprocessing before form data is sent to a server. Chapter 7 
covers advanced topics in manipulating data in text strings, arrays, and JSON. Chapter 8 presents object-oriented 
programming concepts, including coverage of object classes and closures. Chapter 9 explains how to save state infor-
mation using hidden form fields, query strings, cookies, and Web Storage, and also briefly discusses JavaScript security 
issues. Chapter 10 covers supporting touch and pointer events in a web application, as well as using data provided 
by mobile device hardware and optimizing a web app for mobile users. Chapter 11 introduces the basics of how to 
use Ajax and Fetch to dynamically update portions of a web page with server-side data. Chapter 12 introduces using 
the jQuery library to simplify common programming tasks in JavaScript. Appendix A provides detailed instructions 
on installing the XAMPP web server on a local machine. Appendix B gives a brief refresher on the basics of HTML, 
XHTML, and CSS. Appendix C, which is online, lists answers for all Quick Checks.

What’s New in This Edition?
The seventh edition includes the following important new features: 

❯❯ New coverage of JavaScript topics from ES6 including the let and const keywords, template literals, and 
arrow function syntax.

❯❯ Expanded coverage of important programming topics including regular expressions, multidimensional arrays, 
closures, function expressions, array functions, and sorting callback functions.

❯❯ Expanded coverage of object-oriented programming techniques, including the creation of object classes, object 
prototypes, and prototype chains.

❯❯ New and expanded coverage of the Event model, event bubbling and capturing, event objects, pointer events, 
keyboard events, and the Drag and Drop API.

❯❯ New coverage of the Fetch API and JavaScript promises.

❯❯ Expanded coverage of jQuery coding techniques and using the jQuery UI library.

❯❯ Twelve new chapter cases with code written to the latest JavaScript standards and covering such tasks as creating a 
Lightbox Slideshow, developing an interactive Poker Game, using JavaScript string methods to create a Word Cloud 
app, creating an interactive route map with the Google Maps API, and retrieving newsfeed data for an online blog.

❯❯ Four new case projects with each chapter and a fifth debugging project that tests the student’s ability to locate 
and fix programming errors.

❯❯ Expanded coverage of browser developer tools for debugging and managing network connections and data.

❯❯ Updated page design makes it easier to follow steps and locate important information to use as a study guide or 
reference book.

Features
Each chapter in JavaScript, Seventh Edition, includes the following features:

❯❯ Chapter Objectives: Each chapter begins with a list of the important concepts presented in the chapter. This list 
provides you with a quick reference to the contents of the chapter as well as a useful study aid.
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❯❯ Figures and Tables: Plentiful full-color screenshots allow you to check your screen after each change. Tables 
consolidate important material for easy reference.

❯❯ Code Examples: Numerous code examples throughout each chapter are presented in any easy-to-read font.

❯❯ Key Terms: The first use of key terms are printed in bold and orange font to draw your attention to important 
definitions.

These elements provide additional helpful information on specific techniques and concepts.Note

These boxes provide guidance for navigating the world of work.

Skills at Work    

These boxes highlight guidelines for real- world implementation of various topics.

Best Practices    

These boxes explain principles underlying the subject of each chapter or section.

Programming Concepts    

These notes highlight common mistakes that a new programmer might make with the tasks and 
concepts introduced in the chapter and provide suggestions for locating and fixing those errors. 

Common 
Mistakes

❯❯ Quick Check: Several Quick Checks are included in each chapter. These Quick Checks, consisting of two to 
five questions, help ensure you understand the major points introduced in the chapter. Appendix C (provided 
online) gives answers to each chapter’s Quick Check questions.

❯❯ Summary: These brief overviews revisit the ideas covered in each chapter, providing you with a helpful study 
guide.

❯❯ Key Terms List: These lists compile all new terms introduced in the chapter, creating a convenient reference 
covering a chapter’s important concepts.

❯❯ Review Questions: At the end of each chapter, a set of twenty review questions reinforces the main ideas 
introduced in the chapter. These questions help you determine whether you have mastered the concepts 
presented in the chapter.

❯❯ Hands-On Projects: Although it is important to understand the concepts behind every technology, no amount 
of theory can improve on real-world experience. To this end, each chapter includes four detailed Hands-On 
Projects that provide you with practice implementing technology skills in real-world situations. Each project is a 
standalone project, giving you a wide variety of topics and difficulty levels.
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❯❯ Debugging Challenge: Each chapter includes one Debugging Challenge project in which you are given code that 
contains errors preventing it from running or running correctly. Here you can practice the important skill of 
interpreting other people’s code and repairing it.

❯❯ Case Projects: These end-of-chapter projects are designed to help you apply what you have learned to open-
ended situations, both individually and as a member of a team. They give you the opportunity to independently 
synthesize and evaluate information, examine potential solutions, and make decisions about the best way to 
solve a problem.

MindTap
In addition to the readings, the MindTap includes the following:

❯❯ Course Orientation: Custom videos and readings prepare students for the material and coding experiences they 
will encounter in their course.

❯❯ Coding Snippets: These short, ungraded coding activities are embedded in the MindTap Reader and provide 
students an opportunity to practice new programming concepts “in-the-moment”. The coding Snippets help 
transition the student from conceptual understanding to application of JavaScript code.

Instructor and Student Resources
Additional instructor and student resources for this product are available online.  Instructor assets include an Instruc-
tor’s Manual, Solutions and Answer Guide, Solutions Files, Teaching Online Guide, PowerPoint® slides, and a test bank 
powered by Cognero®.  Student assets include data sets for the Hands-On Projects and Case Projects. Sign up or sign 
in at www.cengage.com to search for and access this product and its online resources.

Read This Before You Begin
The following information will help you prepare to use this textbook.

Data Files
To complete the steps, exercises, and projects in this book, you will need data files that have been created specifically 
for this book. The data files are available in the Student Resources. Note that you can use a computer in your school 
lab or your own computer to complete the steps, exercises, and projects in this book.

Using Your Own Computer
You can use a computer in your school lab or your own computer to complete the chapters. To use your own computer, 
you will need the following:

❯❯ A modern web browser, including the current versions of Chrome, Edge, Firefox, or Safari.

❯❯ A code-based HTML editor, such as Aptana Studio, Visual Studio Code, Notepad11, Eclipse, Adobe 
Dreamweaver, or Atom.

❯❯ A web server (for Chapter 11) such as Apache HTTP Server or Microsoft Internet Information Services and PHP. 
Appendix A contains instructions on how to install a web server and PHP.
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1

JavaScript is a programming language that adds complex interactive features to a website. Among its many 
applications, JavaScript can be used to validate data on web forms, generate new content in response to 
user actions, and store data that will persist from one web session to the next. JavaScript is an increasingly 
important tool for the website designer and programmer to create useful and powerful web applications.

This chapter introduces the basics of JavaScript and its role in developing interactive websites. You will 
create a JavaScript program for use in a web page and explore browser tools for evaluating your code.

Exploring the JavaScript Language
Before discussing the details of JavaScript, this chapter will examine how JavaScript fits in with the develop-
ment of the web as the primary source of sharing content and commerce across the globe. JavaScript had its 
origins in the mid-1990s with the creation of the World Wide Web or web, which was developed to share data 
across a network of linked documents. In its early years, the web was primarily used for academic research 
and did not require much more than the ability to share text and graphic images between researchers.

The business world quickly recognized that the web could be a powerful tool for online commerce 
including the process of validating customer data. When JavaScript first appeared in 1995, it was used to 
handle as much of that validation as possible to speed up customer transactions. But what is JavaScript 
and how does it compare to other languages?

Chapter 1

When you complete this chapter, you will be able to:

❯❯ Explain the history of JavaScript and scripting languages and how each has been 
developed for its current use

❯❯ Write content into a web page using JavaScript

❯❯ Add JavaScript code to a web page

❯❯ Create and apply JavaScript variables

❯❯ Work with event handlers within a web page

❯❯ Connect to an external JavaScript File

Introduction to  
JavaScript
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Chapter 1 Introduction to JavaScript 2

Introducing Scripting Languages
In discussing computer languages, especially those associated with website design, this book focuses on three general 
types of languages: programming languages, scripting languages, and markup languages.

A programming language is a set of instructions directing the actions of the computer or computer device. Before 
these instructions can be performed, they need to be compiled, a process by which those instructions are transformed 
into machine code that can be understood by the computer or computer device. The compiling is done by a program 
called a compiler. Thus, before you can work with a programming language, you need to have a working environment 
to build the code, test the code, and compile it. Examples of programming language include Java, C, C11, and C#. The 
browser that interacts with the web was created and compiled using a programming language like C11. This book 
will not examine those languages except in terms of how they might interact with JavaScript.

A scripting language belongs to a subcategory of programming languages that do not require compiling but instead 
are run directly from a program or script. Scripting languages need to be interpreted, in which the code is read line-
by-line by an interpreter that scans the code for errors even as it runs. A JavaScript interpreter is built into every web 
browser, so to create a JavaScript program you only need a text editor to write the code and a web browser to run it. 
Examples of scripting languages include JavaScript, PHP, Perl, and Python.

Finally, a markup language is a language that defines the content, structure, and appearance of a document. Common 
markup languages include HTML (Hypertext Markup Language) used to define the content and structure of your web 
page and CSS (Cascading Style Sheets) used to define how that web page will appear on a specified device. This book 
focuses on the connections between HTML and CSS, which define the content and appearance of your web pages, and 
JavaScript, which provides tools for interacting with those pages (see Figure 1-1). These chapters assume that you 
already possess a basic knowledge of HTML and CSS.

Figure 1-1 The roles of HTML, CSS, and JavaScript 
in web development

HTML

Content and
structure

CSS

Layout and
design

JavaScript

Interactive features
and customized apps

JavaScript and ECMAScript
The version of JavaScript discussed in this book is not the same as the one introduced in 1995. Over the years the 
scope and power of the language has grown to meet the needs of an ever-changing market that includes an increas-
ing variety of devices from desktop computers to mobile phones. Who determines what JavaScript is and how it will 
develop is an important part of its story.

In the beginning, JavaScript was developed for the Netscape browser by the Netscape developer Brendan Eich. Shortly 
thereafter, JavaScript was supported by Microsoft’s Internet Explorer browser in a slightly different form called JScript. 
One major headache for developers in the late 1990s was reconciling the differences between JavaScript and JScript 
as well as keeping up with the changes to the language as each browser sought to add features and tools the other 
browser lacked. Unlike a programming language such as C, at the time there was no single set of governing standards 
for JavaScript. Its growth was as unpredictable as the web itself.

Therefore in 1997, JavaScript was submitted to the European Computer Manufacturers Association (ECMA) as a pro-
posal for a standardized scripting language that would work across a wide range of devices and browsers. A technical 
committee composed of developers from the major browser manufacturers was tasked with the goal of developing 
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a set of standards for the language. The specification for this scripting language is called ECMAScript or ECMA-262. 
JavaScript is just one implementation of the ECMAScript standard, but it is the most important.

Every year a different version or edition of ECMAScript is released. Within a few years of release, most browsers will 
implement the changes in that edition, so while web programmers need to keep apprised of the changes in the most 
recent ECMAScript edition, they also need to write their code to conform to current browsers and older browser ver-
sions. Figure 1-2 describes the most recent editions of ECMAScript at the time of this writing.

You can do a search on the web for the current support of different ECMAScript editions by desktop and 
mobile browsers.Note

ECMAScript Edition Date Issued Features

  6th Edition (ES6) June 2015 Added new syntax for complex applications, included iterators and for . . . of loops, arrow functions, 
variable declarations using let and const

  7th Edition (ES7) June 2016 Added block-scoping of variables, exponentiation operator, and support for asynchronous execution

  8th Edition (ES8) June 2017 Added support for async/await constructions

  9th Edition (ES9) June 2018 Included rest/spread operators for variables, asynchronous iteration, and additions to regular expressions

10th Edition (ES10) June 2019 Added features to object prototypes and changes to Array sorting

11th Edition (ES11) June 2020 Added an optional object chaining operator for array and functions

Figure 1-2 Editions of ECMAScript

The DOM and the BOM
Though they are often talked about as being identical, JavaScript is more than just ECMAScript. ECMAScript is the 
scripting language, but it does not tell you how to interact with the contents of a website or the browser. The full 
implementation of JavaScript is built on three foundations:

❯❯ ECMAScript, which is the core of the programming language, providing the syntax, keywords, properties, 
methods, and general structure for writing code.

❯❯ The Document Object Model (DOM), which describes how to access the contents of the web page and user 
actions within that page.

❯❯ The Browser Object Model (BOM), which describes how to access the features and behaviors of the browser 
itself.

The Document Object Model and the Browser Object Model are examples of an Application Programming Interface 
(API), which is a set of procedures that access an application such as a web page or a web browser. Just as the speci-
fications for ECMAScript have developed and changed through the years, the specifications for the DOM and the BOM 
have also grown in response to the need for a robust and powerful scripting language for the web.

The specifications for the DOM are managed by the World Wide Web Consortium (W3C), the same group managing the 
development of HTML and CSS. Figure 1-3 describes the different versions of the DOM that have been released over 
the years. Note that the DOM is used by programming languages other than JavaScript.

Unlike the Document Object Model, there is no formal set of standards for the Browser Object Model. Each browser is 
different and implements its own version of the BOM, but the BOM is largely the same from one browser to the next 
because it is to everyone’s advantage to adhere to a common standard.

Now that you have had a short overview of JavaScript and its history, let’s turn to how JavaScript works with your 
computer or mobile device and the computers that host the sites on the web you frequently visit.
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Understanding Client/Server Architecture
To be successful in web development, you need to understand the basics of client/server architecture. There are many 
definitions of the terms “client” and “server”. In traditional client/server architecture, the server is a device or applica-
tion from which a client requests information. A server fulfills a request for information by managing the request or 
serving the requested information to the client—hence the term, “client/server.” A system consisting of a client and a 
server is known as a two-tier system.

One of the primary roles of the client, or front end, in a two-tier system is the presentation of an interface to the user. 
The user interface gathers information from the user, submits it to a server, or back end, then receives, formats, and 
presents the results returned from the server. The main responsibilities of a server are usually data storage, manage-
ment, and communicating with external services. On client/server systems, heavy processing, such as calculations, 
usually takes place on the server. As devices that are used to access web pages—such as computers, tablets, and 
mobile phones—have become increasingly powerful, however, many client/server systems have placed increasing 
amounts of the processing responsibilities on the client. In a typical client/server system, a client computer might 
contain a front end that is used for requesting information from a database on a server. The server locates records 
that meet the client request, performs some sort of processing, such as calculations on the data, and then returns the 
information to the client. The client computer can also perform some processing, such as building the queries that 
are sent to the server or formatting and presenting the returned data. Figure 1-4 illustrates the design of a two-tier 
client/server system.

Figure 1-4 A two-tier client/server system

Server response

Client request

Client

Server

DOM Date Features

DOM Level 0 1995 Provided a basic interface to access the contents of a web page using the initial version of JavaScript

DOM Level 1 October 1998 Added a way of mapping the content of a web page to JavaScript keywords, functions, properties, and methods

DOM Level 2 December 2000 Added an interface to events occurring within the web page, the contents of CSS style sheets, and the ability to 
transverse and manipulate the hierarchical structure of the web page content

DOM Level 3 April 2004 Added support for methods to load and save web documents, validate web forms, and provides the ability to work 
with keyboard objects and events

DOM Level 4 November 2015 An ongoing “living standard” that is updated to reflect the events and actions occurring within the document model 
based on the evolving needs of the market and mobile devices

Figure 1-3 Versions of the Document Object Model

The web is built on a two-tier client/server system, in which a web browser (the client) requests documents from a 
web server. The web browser is the client user interface. You can think of the web server as a repository for web pages. 
After a web server returns the requested document, the web browser (as the client user interface) is responsible for 
formatting and presenting the document to the user. The requests and responses through which a web browser and 
web server communicate occur via Hypertext Transfer Protocol (HTTP), which is the main system used on the web 
for exchanging data. For example, if a web browser requests the URL http://www.cengage.com, the request is made 
with HTTP because the URL specifies the HTTP protocol. The web server then returns to the web browser an HTTP 
response containing the response header and the HTML for the Cengage home page.
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After you start adding databases and other types of applications to a web server, the client/ server system evolves into 
what is known as a three-tier client architecture. A three-tier client/server system—also known as a multitier client/
server system or n-tier client/server system—consists of three distinct pieces: the client tier, the processing tier, and 
the data storage tier. The client tier, or user interface tier, is still the web browser. However, the database portion of 
the two-tier client/server system is split into a processing tier and the data storage tier. The processing tier, or middle 
tier, handles the interaction between the web browser client and the data storage tier. (The processing tier is also 
sometimes called the processing bridge.) Essentially, the client tier makes a request of a database on a web server. The 
processing tier performs any necessary processing or calculations based on the request from the client tier, and then 
reads information from or writes information to the data storage tier. The processing tier also handles the return of any 
information to the client tier. Note that the processing tier is not the only place where processing can occur. The web 
browser (client tier) still renders web page documents (which requires processing), and the database or application 
in the data storage tier might also perform some processing.

Two-tier client/server architecture is a physical arrangement in which the client and server are two 
separate computers. Three-tier client/server architecture is more conceptual than physical, because the 
storage tier can be located on the same server.

Note

Figure 1-5 A three-tier client/server system
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Figure 1-5 illustrates the design of a three-tier client/server system.

JavaScript and Client-Side Scripting
HTML was not originally intended to control the appearance of pages in a web browser. When HTML was first devel-
oped, web pages were static—that is, they couldn’t change after the browser rendered them. However, after the web 
grew beyond a small academic and scientific community, people began to recognize that greater interactivity and bet-
ter visual design would make the web more useful. As commercial applications of the web grew, the demand for more 
interactive and visually appealing websites also grew.

HTML could be used to produce only static documents. You can think of a static web page written in HTML as being 
approximately equivalent to a printed book; you can read it or move around in it, but the content is fixed.

What JavaScript provides that HTML needed is client-side scripting in which the scripting language runs on a local 
browser (on the client tier) instead of on a web server (on the processing tier). In this way, web pages can respond 
dynamically to user actions without putting extra strain on the operations of the server.
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Figure 1-6 How a web server processes a server-side script
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Many people think that JavaScript is a simplified version of the Java programming language, or is 
related to Java in some other way. However, the languages are entirely different. Java is an advanced 
programming language that was created by Sun Microsystems and is considerably more difficult to 
master than JavaScript. Although Java can be used to create programs that can run from a web page, 
Java programs are usually external programs that execute independently of a browser. In contrast, 
JavaScript programs always run within a web page and control the browser.

Note

For security reasons, the JavaScript programming language cannot be used outside of specific environments. The 
most common environment where JavaScript is run is a web browser. For example, to prevent malicious scripts from 
stealing information, such as your email address or the credit card information you use for an online transaction, or 
from causing damage by changing or deleting files, JavaScript allows manipulation only of select files associated with 
the browser, and then with strict limitations. Another helpful limitation is the fact that JavaScript cannot run system 
commands or execute programs on a client. The ability to read and write cookies and a few other types of browser 
storage is the only type of access to a client that JavaScript has. Web browsers, however, strictly govern their storage 
and do not allow access to stored information from outside the domain that created it. This security also means that 
you cannot use JavaScript to interact directly with web servers that operate at the processing tier. Although program-
mers can employ a few tricks (such as forms and query strings) to allow JavaScript to interact indirectly with a web 
server, if you want true control over what’s happening on the server, you need to use a server-side scripting language.

Understanding Server-Side Scripting
Server-side scripting refers to programming using a scripting language that is executed from a web server. Some of the 
more popular server-side scripting languages are PHP, ASP.NET, Python, and Ruby. One of the primary reasons for using 
a server-side scripting language is to develop an interactive website that communicates with a database. Server-side 
scripting languages work in the processing tier and have the ability to handle communication between the client tier 
and the data storage tier. At the processing tier, a server-side scripting language usually prepares and processes the 
data in some way before submitting it to the data storage tier. Some of the more common uses of server-side scripting 
languages include shopping carts, search engines, discussion forums, and multiplayer games.

Without JavaScript, a server-side scripting language can’t access or manipulate the user’s web browser. In fact, a server-
side scripting language cannot run on a client tier at all. Instead, a server-side scripting language exists and executes 
solely on a web server, where it performs various types of processing or accesses databases. When a client requests a 
server-side script, the script is interpreted and executed by the scripting engine within the web server software. After 
the script finishes executing, the web server software translates the results of the script (such as the result of a calcu-
lation or the records returned from a database) into HTML, which it then returns to the client. In other words, a client 
will never see the serverside script, only the HTML that the web server software returns from the script. Figure 1-6 
illustrates how a web server processes a server-side script.

Should You Use Client-Side or Server-Side Scripting?
An important question in the design of any client/server system is deciding how much processing to place on the client 
and how much to place on the server. In the context of website development, you must decide whether to use client-
side JavaScript or a server-side script. This is an important consideration that can greatly affect the performance of 
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your program. In some cases, the decision is simple. If you want to control the web browser, you must use JavaScript. 
If you want to access a database on a web server, you must use a server-side script. However, there are tasks that 
both languages can accomplish, such as validating forms and manipulating cookies. Furthermore, both languages can 
perform the same types of calculations and data processing.

A general rule of thumb is to allow the client to handle the user interface processing and light processing, such as data 
validation, but have the web server perform intensive calculations and data storage. This division of labor is especially 
important when dealing with clients and servers over the web. Unlike with clients on a private network, it’s not pos-
sible to know in advance the computing capabilities of each client on the web. You cannot assume that each client 
(browser) that accesses your client/server application (website) has the necessary power to perform the processing 
required by an application. For this reason, intensive processing should be performed on the server.

Because servers are usually much more powerful than client computers, your first instinct might be to let the server 
handle all processing and only use the client to display a user interface. Although you do not want to overwhelm cli-
ents with processing they cannot handle, it is important to perform as much processing as possible on the client for 
several reasons:

❯❯ Distributing processing among multiple clients creates applications that are more powerful, because the 
processing power is not limited to the capabilities of a single computer. Client devices—including computers, 
tablets, and smartphones—become more powerful every day. Thus, it makes sense to use a web application to 
harness some of this power and capability. A web application is a program that is executed on a server but is 
accessed through a web page loaded in a client browser.

❯❯ Local processing on client computers minimizes transfer times across the Internet and creates faster 
applications. If a client had to wait for all processing to be performed on the server, a web application could be 
painfully slow over a low-bandwidth Internet connection.

❯❯ Performing processing on client computers decreases the amount of server resources needed by application 
providers, decreasing costs for infrastructure and power use.

Now that you have seen how JavaScript fits within the client/server structure, in the next section you will explore how 
to start applying JavaScript to your own web pages.

Quick Check 1

1.	 How does a scripting language like JavaScript differ from a programming language like C#?

2.	 What are the three core foundations upon which JavaScript is built?

3.	 In client/server architecture, what is a client? What is a server?

Writing a JavaScript Program
Before you start writing JavaScript you must first choose an application in which to create your programs. You can 
work with IDEs or code editors.

IDEs and Code Editors
You have a lot of choices for creating your own JavaScript programs. Like HTML and CSS, writing JavaScript code 
requires only a basic text editor but you can also use an Integrated Development Environment (IDE) to manage all 
of the facets of website development, including the writing and testing of JavaScript code. Popular IDEs include the 
following:

❯❯ Microsoft Visual Studio (https://visualstudio.microsoft.com)

❯❯ Komodo IDE (https://www.activestate.com/products/komodo-ide)

❯❯ Aptana Studio (http://www.aptana.com)

❯❯ NetBeans (https://netbeans.org)
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If you find an IDE to be either too expensive (though there are very good free IDEs available on the web) or containing 
too much overhead for your projects, you might be better suited with a code editor that simply manages the writing 
of HTML, CSS, and JavaScript code within a graphical interface. These editors include a number of features that make 
coding easier, including numbering the lines of code in a document and color coding text based on meaning—for 
instance, displaying JavaScript keywords in one color and user-defined text and values in another. Several good free 
code editors are available online, including the following:

❯❯ Visual Studio Code (https://code.visualstudio.com)

❯❯ Notepad11 (https://notepad-plus-plus.org)

❯❯ Brackets (http://brackets.io)

❯❯ Atom (https://atom.io)

The HTML, CSS, and JavaScript code samples displayed in this book are based on a code editor that uses color to 
distinguish different parts of the code. Your code editor might use a different coloring scheme, but that will not affect 
the code because HTML, CSS, and JavaScript are saved as basic text.

In this chapter, you will add JavaScript code to a web page for Tinley Xeriscapes, a landscaping company that special-
izes in plants that need minimal watering. A designer has created a new layout for the company’s website, and they 
would like you to incorporate JavaScript to enhance the functionality of one of the site’s pages. Figure 1-7 shows a 
preview of the completed web page incorporating the functionality you will create in this chapter.

Figure 1-7 Completed Tinley Xeriscapes Plants page using JavaScript 
U.S. Department of Agriculture
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Open the HTML file for this web page now.

To open the Tinley Xeriscapes page:

1.	 Use your code editor to go to the js01 c chapter folder of your data files.

2.	 Open the js01_txt.html file in your code editor.

3.	 Within the head section of the HTML file, enter your name and the date in the Author and Date lines.

4.	 Save the file as js01.html.

Next, begin writing the code of your first JavaScript program.
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The script Element
JavaScript can be added to a web page by embedding the code within the following script element:

<script>

   statements

</script>

where statements are the individual lines of code in the JavaScript program. The following script element contains 
a single JavaScript statement displaying an alert window with the text message “Hello World”:

<script>

   window.alert("Hello World");

</script>

When the browser encounters a script element, it stops loading the page and processes the statements enclosed 
within the script. In this case, the browser would stop loading the page to display the “Hello World” message. Once the 
script is run, the browser continues to process the remaining content in the HTML file. Add a script element now 
within the opening and closing <figcaption> tags in the HTML file for the Tinley Xeriscapes page.

To add the script element to the page:

1.	 Scroll down to the article element in the js01.html file within your code editor.

2.	 After the opening <figcaption> tag, type:

<script>

</script>

indenting the opening and closing tags to make your code easier to read. See Figure 1-8.

Figure 1-8 Adding a script element

The script element encloses
JavaScript code within an HTML �le

3.	 Save your changes to the file.

Next you will learn general rules for writing statements in JavaScript.

JavaScript Statements
The individual lines of code, or statements, that make up a JavaScript program in a document are contained within the 
script element. The following script contains a single statement that writes the text “Plant choices” to a web browser 
window, using the write() method of the Document object, which you will study shortly:

document.write("<p>Plant choices</p>");

Notice that the preceding statement ends in a semicolon. Many programming languages, including C11 and Java, 
require you to end all statements with a semicolon. JavaScript statements are not required to end in semicolons. Semi-
colons are strictly necessary only when you want to separate statements that are written on a single line. However, it is 
considered good JavaScript programming practice to end every statement with a semicolon whether strictly required 
or not. This is the convention that will be used in this book.
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