

for Web Warriors
JavaScript

Australia • Brazil • Canada • Mexico • Singapore • United Kingdom • United States

Seventh Edition

Patrick Carey

Sasha Vodnik

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product
text may not be available in the eBook version.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

© 2022, 2015 Cengage Learning, Inc.

Unless otherwise noted, all content is © Cengage.

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein
may be reproduced or distributed in any form or by any means, except as
permitted by U.S. copyright law, without the prior written permission of the
copyright owner.

For product information and technology assistance, contact us at
Cengage Customer & Sales Support, 1-800-354-9706

or support.cengage.com.

For permission to use material from this text or product, submit all
requests online at www.cengage.com/permissions.

Library of Congress Control Number: 2021909896

ISBN: 978-0-357-63800-2

Cengage
200 Pier 4 Boulevard
Boston, MA 02210
USA

Cengage is a leading provider of customized learning solutions
with employees residing in nearly 40 different countries and sales in more
than 125 countries around the world. Find your local representative at
www.cengage.com.

To learn more about Cengage platforms and services, register or access
your online learning solution, or purchase materials for your course,
visit www.cengage.com.

Notice to the Reader
Publisher does not warrant or guarantee any of the products described
herein or perform any independent analysis in connection with any of the
product information contained herein. Publisher does not assume, and
expressly disclaims, any obligation to obtain and include information other
than that provided to it by the manufacturer. The reader is expressly warned
to consider and adopt all safety precautions that might be indicated by the
activities described herein and to avoid all potential hazards. By following
the instructions contained herein, the reader willingly assumes all risks in
connection with such instructions. The publisher makes no representations or
warranties of any kind, including but not limited to, the warranties of fitness
for particular purpose or merchantability, nor are any such representations
implied with respect to the material set forth herein, and the publisher takes
no responsibility with respect to such material. The publisher shall not be
liable for any special, consequential, or exemplary damages resulting, in
whole or part, from the readers’ use of, or reliance upon, this material.

JavaScript for Web Warriors, Seventh Edition

Patrick Carey / Sasha Vodnik

SVP, Higher Education & Skills Product: Erin

Joyner

VP, Higher Education & Skills Product: Thais

Alencar

Product Director: Mark Santee

Associate Product Manager: Tran Pham

Product Assistant: Tom Benedetto

Learning Designer: Mary Convertino

Senior Content Manager: Michelle Ruelos

Cannistraci

Digital Delivery Lead: David O’Connor

Technical Editor: Danielle Shaw

Developmental Editor: Deb Kaufmann

Vice President, Product Marketing: Jason Sakos

Director, Marketing: Danae April

Marketing Manager: Mackenzie Paine

IP Analyst: Ashley Maynard

IP Project Manager: Nick Barrows

Production Service: SPi Global

Designer: Erin Griffin

Cover Image Source: NesaCera/ShutterStock.com

Printed in the United States of America
Print Number: 01	 Print Year: 2021

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WCN: 02-300

Brief Contents

Preface� xi

Chapter 1 Introduction to JavaScript��� 1

Chapter 2 Working with Functions, Data Types, and Operators������������������������������ 37

Chapter 3 Building Arrays and Controlling Flow�� 77

Chapter 4 Debugging and Error Handling��117

Chapter 5 Creating a Web App Using the Document Object Model����������������������163

Chapter 6 Enhancing and Validating Forms���209

Chapter 7 Manipulating Data in Strings, Arrays, and Other Objects���������������������253

Chapter 8 Creating Customized Objects, Properties, and Methods������������������������309

Chapter 9 Managing State Information and Security��363

Chapter 10 Programming with Event Objects and Third-Party APIs���������������������401

Chapter 11 Managing Data Requests with AJAX and Fetch������������������������������������449

Chapter 12 Introducing jQuery��501

appendix a Installing and Configuring a Testing Server���535

appendix B Working with HTML and CSS ���543

appendix C Solutions to Quick Checks���Online

GLOSSARY� 549
Index� 561

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents

Preface	 xi

Chapter 1

Introduction to JavaScript	 1
Exploring the JavaScript Language	 1

Introducing Scripting Languages	 2

JavaScript and ECMAScript	 2

The DOM and the BOM	 3

Understanding Client/Server Architecture	 4

JavaScript and Client-Side Scripting	 5

Understanding Server-Side Scripting	 6

Should You Use Client-Side or Server-Side
Scripting?	 6

Writing a JavaScript Program	 7
IDEs and Code Editors	 7

The script Element	 9

JavaScript Statements	 9

Understanding JavaScript Objects	 10

Using the write() Method	 10

Case Sensitivity in JavaScript	 13

Adding Comments to a JavaScript Program	 13

Writing Basic JavaScript Code	 14
Using Variables	 14

Assigning Variable Names	 15

Declaring and Initializing Variables	 15

Building Expressions with Variables	 17
Building an Expression	 17

Modifying Variables	 18

Understanding Events	 18
Working with Elements and Events	 19

Referencing Web Page Elements	 21

Structuring JavaScript Code	 22
Including a script Element for Each

Code Section	 23

Placing the script Element	 23

Creating a JavaScript Source File	 23
Referencing an External File	 24

Using the async and defer Keywords	 24

Connecting to a JavaScript File	 25

Working with Libraries	 26

Validating Web Pages	 27
Summary	 28
Key Terms	 29
Review Questions	 30
Hands-On Projects	 31
Case Projects	 35

Chapter 2

Working with Functions,
Data Types, and Operators	 37
Working with Functions	 38

Defining a Function	 38

Writing a Function	 39

Calling a Function	 41

Returning a Value from a Function	 41

Managing Events with Functions	 42
Using Event Handlers	 42

Events as Object Properties	 43

Event Listeners	 43

Events and Anonymous Functions	 44

Applying a Function to an Event	 44

Using Built-in JavaScript Functions	 45

Understanding Variable Scope	 45
let and var Declaration Scopes	 46

Local and Global Scope	 46

Working with Data Types	 48
Working with Numeric Values	 48

Working with Boolean Values	 49

Working with Strings	 49

Escape Characters and Sequences	 50

Using Operators to Build Expressions	 51
Arithmetic Operators	 52

Assignment Operators	 53

Comparison Operators	 54

Conditional Operators	 55

Understanding Falsy and Truthy Values	 55

Logical Operators	 56

Special Operators	 57

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents v

Understanding Operator Precedence	 57

Using Expressions with Web Form
Controls	 59
Working with Input Control Values	 59

Working with Checkboxes	 61

Using the change Event with Web Form Controls	 64

Locating Errors with the Browser
Console	 66
Accessing the Browser Console	 66

Locating an Error in Your Program	 67

Summary	 68
Key Terms	 69
Review Questions	 70
Hands-On Projects	 71
Case Projects	 76

Chapter 3

Building Arrays and
Controlling Flow	 77
Storing Data in Arrays	 77

Declaring and Initializing Arrays	 78

Elements and Indexes	 79

Creating an Array	 79

Multidimensional Arrays	 82

Exploring HTML Collections	 83
Referencing an Element within a Collection	 83

Searching through the DOM	 84

Viewing Arrays and HTML Collections
with the Console	 85

Working with Program Loops	 86
The while Loop	 86

The do while Loop	 89

The for Loop	 89

Writing a for Loop	 91

Exploring Array Methods for
Generating Loops	 94

Adding Decision Making to Your Code	 96
The if Statement	 96

The if else Statement	 97

The else if Statements	 97

Nested if and if else Statements	 100

Conditional Statements and Browser Testing	 101

The switch Statement	 102

Managing Program Loops and
Conditional Statements	 105
The break Statement	 105

The continue Statement	 105

Statement Labels	 105

Summary	 107
Key Terms	 107
Review Questions	 108
Hands-On Projects	 109
Case Projects	 116

Chapter 4

Debugging and Error
Handling	 117
Introduction to Debugging	 117

Load-Time Errors	 118

Runtime Errors	 119

Logic Errors	 120

Starting Debugging with the
Browser Console	 121

Running Javascript in Strict Mode	 125

Tracing Errors to Their Source	 127
Tracing Errors with the window.alert()

Method	 127

Tracing Errors with the Console Log	 131

Using Comments to Locate Bugs	 135

Tracking Program Flow with
Debugging Tools	 136
Accessing your Browser’s Debugging Tools	 136

Adding and Removing Break Points	 137

Stepping through the Program Execution	 140

Tracking Variables and Expressions	 141

Examining the Call Stack	 143

Managing Errors	 145
Handling Exceptions with the try catch

Statement	 145

Throwing an Exception	 146

The try catch finally Statement	 146

The error Parameter in the catch
Statement	 147

Applying Exception Handling to a Program	 147

Customizing Your Error Handling	 150
Catching Errors with the error Event	 150

Error Handling Functions	 151

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

vi Contents

Summary	 152
Key Terms	 153
Review Questions	 153
Hands-On Projects	 154
Case Projects	 160

Chapter 5

Creating a Web App using
the Document Object
Model	 163
Designing a Web App	 163

Introducing Nodes	 165
Nodes and the Document Object Model	 166

Selecting Nodes with the
querySelectorAll() Method	 168

Creating and Connecting Nodes	 168

Elements Nodes and HTML Attributes	 169

Nodes and Inline Styles	 170

Creating a Document Fragment in an App	 170

Viewing Elements within the Browser
Debugger	 173

Restructuring a Node Tree	 177
Moving Nodes with the appendChild()

Method	 177

Moving Nodes with the insertBefore()
Method	 179

Cloning a Node	 181

Running Timed Commands	 181
Repeating Commands at Specified Intervals	 181

Stopping a Timed Command	 182

Using Time-Delayed Commands	 183

Working with Popup Windows	 184
System Dialog Boxes	 184

Working with Browser Windows	 185

Writing Content to a Browser Window	 187

Limitations of Browser Windows	 187

Creating an Overlay	 188
Introducing the this Object	 190

Removing a Node	 191

Exploring the Browser Object Model	 193
The History Object	 193

The location Object	 194

The navigator Object	 194

The screen Object	 195

Summary	 196
Key Terms	 197
Review Questions	 197
Hands-On Projects	 199
Case Projects	 206

Chapter 6

Enhancing and Validating
Forms	 209
Exploring Forms and Form Elements	 209

The Forms Collection	 211

Working with Form Elements	 211

Properties and Methods of input Elements	 212

Navigating Between Input Controls	 213

Working with Selection Lists	 214

Working with Option Buttons	 217
Locating the Checked Option	 217

Accessing the Option Label	 220

Formatting Data Values in a Form	 220
The toFixed() Method	 220

Formatting Values Using a Locale String	 221

Responding to Form Events	 223

Working with Hidden Fields	 225

Exploring Form Submission	 227
Using the submit Event	 227

Resetting a Form	 227

Validating Form Data with JavaScript	 228
Working with the Constraint Validation API	 230

Exploring the ValidityState Object	 231

Creating a Custom Validation Message	 232

Responding to Invalid Data	 233

Validating Data with Pattern Matching	 235

Validating a Selection List	 236

Testing a Form Field Against
a Regular Expression	 238

Creating a Custom Validity Check	 240

Managing Form Validation	 241
Summary	 243
Key Terms	 244
Review Questions	 244
Hands-On Projects	 246
Case Projects	 252

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents vii

Chapter 7

Manipulating Data in
Strings, Arrays, and Other
Objects	 253
Retrieving Content from a Text File	 253

The file Object	 255

The File Reader API	 256

Working with Text Strings	 258
Searching for Substrings within a Text String	 259

Modifying Text Strings	 261

Extracting Characters and Substrings	 263

Combining Text Strings	 264

Comparing Text Strings	 265

Introducing Regular Expressions	 266
Matching a Substring	 266

Setting Regular Expression Flags	 267

Defining Character Types and Character
Classes	 268

Specifying Repeating Characters	 270

Using Escape Sequences	 272

Specifying Alternate Patterns and Grouping	 273

Programming with Regular
Expressions	 274
Regular Expression Methods	 275

Replacing Text with Regular Expressions	 276

Splitting a Text String into an Array	 278

Referencing Substring Matches	 279

Exploring Array Methods	 280
Reversing and Sorting an Array	 281

Sorting with a Compare Function	 284

Extracting and Inserting Array Items	 286

Using Arrays as Data Stacks	 287

Exploring the Math Object	 292
The Math Object	 292

Math Object Properties	 292

Applying a Math Method to an Array	 293

Random Numbers and Random Sorting	 294

Exploring the Date Object	 294
Extracting Information from Dates

and Times	 295

Setting Date and Time Values	 296

Exploring Template Literals	 297

Adding Placeholders to Template Literals	 297

Tagging a Template Literal	 297

Summary	 299
Key Terms	 300
Review Questions	 300
Hands-On Projects	 301
Case Projects	 308

Chapter 8

Creating Customized
Objects, Properties, and
Methods	 309
Understanding Object-Oriented

Programing	 309
Reusing Software Objects	 310

Understanding Encapsulation	 310

Creating an Object Literal	 312
Dot Operators and Bracket Notation	 313

Creating a Custom Method	 315

Creating an Object with the new Operator	 317

Working with Object Classes	 318
Understanding Object Classes	 318

Object Constructors and Literals	 318

Constructor Functions	 319

Combining Object Classes	 320

Working with Object Prototypes	 327
The Prototype Object	 327

Extending Built-in JavaScript Objects	 329

Introducing Closures	 331
Lexical Scope	 331

Closures and the Lexical Environment	 332

Closures with for Loops	 334

Working with Public, Private,
and Privileged Methods	 338

Combining Objects with Prototype
Chains	 343
Creating a Prototype Chain	 344

Using the Base Object	 345

Using the apply()and call() Methods	 346

Data Storage with Associative Arrays	 347
The for in and for of Loops	 347

Storing Object data in JSON	 349

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

viii Contents

Summary	 351
Key Terms	 352
Review Questions	 353
Hands-On Projects	 354
Case Projects	 362

Chapter 9

Managing State
Information and Security	 363
Understanding Sessions and State

Information	 363

Sharing Data Between Forms	 365
Retrieving the Query String Text using the
Location object	 367

Replacing URI Encoding Characters	 368

Introducing Web Storage	 371
The Web Storage API	 371

Local Storage and Session Storage Objects	 371

Storing Data in Web Storage	 372
Viewing Web Storage Items in your Browser	 374

Retrieving Items with the getItem()
Method	 374

Removing Items from Web Storage	 376

Exploring Storage Events	 377

Web Storage and the Same-Origin Policy	 378

Introducing Cookies	 379
Cookies vs. Web Storage	 379

The Structure of a Cookie	 380

Writing Data into a Cookie	 381
Setting the Cookie Expiration Date	 382

Setting the Cookie Path	 383

Setting the Cookie Domain	 383

Defining Cookie Security	 383

A Function to Write the Cookie Value	 384

Reading a Cookie	 385

Deleting a Cookie	 386

Exploring Security Issues	 386
Secure Coding with JavaScript	 387

JavaScript Security Concerns	 387

Using Third-Party Scripts	 388

Summary	 389
Key Terms	 389
Review Questions	 390

Hands-On Projects	 391
Case Projects	 399

Chapter 10

Programming with Event
Objects and Third-Party
APIs	 401
Working with Events as Objects	 402

The Event Object	 402

Event Capturing and Bubbling	 403

Exploring Mouse, Touch, and Pointer
Events	 406
Exploring Touch Events	 407

Managing Multiple Touchpoints	 409

Using Pointer Events	 409

Programming a Drag and Drop Action	 410
Finding Event Coordinates	 411

Dragging and Dropping an Element	 413

Browser Tools for Touchscreen Emulation	 415

Exploring the Drag and Drop API	 415
The HTML Drag and Drop API	 416

Transferring Data with Drag and Drop	 417

Working with Keyboard Events	 418

Creating an Interactive Map	 421
Getting Started with the Google Maps API	 421

The map Object	 423

Adding Map Pins	 425

Mapping Your Position with
Geolocation	 426

Adding Directions to a Map	 430
The route Object	 430

Displaying the Driving Route	 431

Introducing the Device Orientation API	 434

Preparing an App for Mobile Use	 435
Testing Tools	 435

Minimizing Download Size	 435

Minifying Files	 435

Summary	 437
Key Terms	 437
Review Questions	 438
Hands-On Projects	 439
Case Projects	 446

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents ix

Chapter 11

Managing Data Requests
with AJAX and Fetch	 449
Introducing Server Requests	 450

Exploring HTTP Messages	 452
Understanding HTTP Messages	 452

Introducing AJAX	 454
The XMLHttpRequest Object	 454

Managing a Response	 456

Viewing the Status of a Request
and Response	 458

AJAX and Callback Hell	 460

Introducing Arrow Functions	 461
Arrow Functions and Parameter Values	 462

Exploring the Promise Object	 464
Defining a Promise Object	 464

Chaining Promises	 465

Running Multiple Promises	 466

Using the Fetch API	 467
Managing Fetch Responses	 467

Error Handling with Fetch	 468

Using Fetch to Return a Search	 469

Working with XML	 472
Parsing XML Content	 473

Working with an XML Node Tree	 474

Creating an Autocomplete
Search Box	 476
Working with JSON Data	 477

Building the Suggestion Box	 479

Working with Third-Party APIs	 482
Requesting a Random GIF	 482

Third-Party Endpoints	 483

Exploring Security Issues with APIs	 486
Working with CORS	 486

Using JSONP	 486

Using XHR with a Proxy	 487

Summary	 488

Key Terms	 488
Review Questions	 489
Hands-On Projects	 490
Case Projects	 500

Chapter 12

Introducing jQuery	 501
Getting Started with jQuery	 501

Versions of jQuery	 502

Loading jQuery	 502

Is jQuery still Relevant?	 503

Working with jQuery Selectors	 505
Selecting Elements from the DOM	 506

Traversing the DOM with jQuery	 507

Working with Attributes and CSS Properties	 508

Changing the DOM Structure	 509

Handling Events with jQuery	 511

Working with Effects and Animations	 515
Chaining Effects	 516

Creating Custom Effects with Animate	 517

Controlling the Animation Queue	 519

Exploring jQuery Plugins	 520
Summary	 524
Key Terms	 524
Review Questions	 525
Hands-On Projects	 526
Case Projects	 533

appendix a

Installing and Configuring
a Testing Server� 535

appendix B

Working with HTML and CSS� 543
Appendix C Solutions to
Quick Checks	On line

GLOSSARY� 549

index� 561

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface

JavaScript is a client-side scripting language that allows web page authors to develop interactive web pages
and sites. Although JavaScript is considered a programming language, it is also a critical part of web page
design and authoring. This is because the JavaScript language enables web developers to add functionality
directly to a web page’s elements. The language is relatively easy to learn, allowing non-programmers to quickly
incorporate JavaScript functionality into a web page. In fact, because it is used extensively in the countless
web pages that are available on the World Wide Web, JavaScript is arguably the most widely used program-
ming language in the world.

JavaScript, Seventh Edition, teaches web page development with JavaScript for students with little programming
experience. Although it starts with an overview of the components of web page development, students using
this book should have basic knowledge of web page creation, including familiarity with commonly used HTML
elements and CSS properties. This book covers the basics of ECMAScript Edition 11 (June, 2020), which is
supported by all modern browsers. This book also covers advanced topics including object-oriented program-
ming, the Document Object Model (DOM), touch and mobile interfaces, and Fetch. The HTML documents in
this book are written to HTML5 standards, with some XHTML-compatible element syntax. After completing
this course, you will be able to use JavaScript to build professional quality web applications.

The Approach
This book introduces a variety of techniques, focusing on what you need to know to start writing JavaScript
programs. In each chapter, you perform tasks that let you use a particular technique to build JavaScript
programs. The step-by-step tasks are guided activities that reinforce the skills you learn in the chapter and
build on your learning experience by providing additional ways to apply your knowledge in new situations.
In addition to step-by-step tasks, each chapter includes objectives, short quizzes, a summary, key terms with
definitions, review questions, and reinforcement exercises that highlight major concepts and let you practice
the techniques you’ve learned.

Course Overview
The examples and exercises in this book will help you achieve the following objectives:

❯❯ Use JavaScript with HTML elements

❯❯ Work with JavaScript variables and data types and learn how to use the operations that can be
performed on them

❯❯ Add functions and control flow within your JavaScript programs

❯❯ Trace and resolve errors in JavaScript programs

❯❯ Write JavaScript code that controls the web browser through the browser object model

❯❯ Use JavaScript to make sure data was entered properly into form fields and to perform other types of
preprocessing before form data is sent to a server

❯❯ Create JavaScript applications that use object-oriented programming techniques

❯❯ Manipulate data in strings and arrays

❯❯ Save state information using hidden form fields, query strings, cookies, and Web Storage

❯❯ Incorporate touchscreen support and mobile capabilities in web applications

❯❯ Dynamically update web applications with Ajax and Fetch

❯❯ Build a web application using the jQuery library

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Prefacexii

JavaScript, Seventh Edition, presents twelve chapters that cover specific aspects of JavaScript programming. Chapter 1
discusses basic concepts of the World Wide Web, reviews HTML documents, and covers the basics of how to add
JavaScript to web pages. How to write basic JavaScript code, including how to use variables, data types, expressions,
operators, and events, is also discussed in Chapter 1. This early introduction of key JavaScript concepts gives you a
framework for better understanding more advanced concepts and techniques later in this book, and allows you to work
on more comprehensive projects from the start. Chapter 2 covers functions, data types, and how to build expressions.
Chapter 3 explains how to store data in arrays and how to use structured logic in control structures and statements.
Chapter 4 provides a thorough discussion of debugging techniques, including how to use the browser consoles inte-
grated into all modern browsers. Chapter 5 teaches how to manipulate the structure of a web document by creating
element nodes and web page overlays. Chapter 6 explains how to use JavaScript to make sure data was entered prop-
erly into form fields and how to perform other types of preprocessing before form data is sent to a server. Chapter 7
covers advanced topics in manipulating data in text strings, arrays, and JSON. Chapter 8 presents object-oriented
programming concepts, including coverage of object classes and closures. Chapter 9 explains how to save state infor-
mation using hidden form fields, query strings, cookies, and Web Storage, and also briefly discusses JavaScript security
issues. Chapter 10 covers supporting touch and pointer events in a web application, as well as using data provided
by mobile device hardware and optimizing a web app for mobile users. Chapter 11 introduces the basics of how to
use Ajax and Fetch to dynamically update portions of a web page with server-side data. Chapter 12 introduces using
the jQuery library to simplify common programming tasks in JavaScript. Appendix A provides detailed instructions
on installing the XAMPP web server on a local machine. Appendix B gives a brief refresher on the basics of HTML,
XHTML, and CSS. Appendix C, which is online, lists answers for all Quick Checks.

What’s New in This Edition?
The seventh edition includes the following important new features:

❯❯ New coverage of JavaScript topics from ES6 including the let and const keywords, template literals, and
arrow function syntax.

❯❯ Expanded coverage of important programming topics including regular expressions, multidimensional arrays,
closures, function expressions, array functions, and sorting callback functions.

❯❯ Expanded coverage of object-oriented programming techniques, including the creation of object classes, object
prototypes, and prototype chains.

❯❯ New and expanded coverage of the Event model, event bubbling and capturing, event objects, pointer events,
keyboard events, and the Drag and Drop API.

❯❯ New coverage of the Fetch API and JavaScript promises.

❯❯ Expanded coverage of jQuery coding techniques and using the jQuery UI library.

❯❯ Twelve new chapter cases with code written to the latest JavaScript standards and covering such tasks as creating a
Lightbox Slideshow, developing an interactive Poker Game, using JavaScript string methods to create a Word Cloud
app, creating an interactive route map with the Google Maps API, and retrieving newsfeed data for an online blog.

❯❯ Four new case projects with each chapter and a fifth debugging project that tests the student’s ability to locate
and fix programming errors.

❯❯ Expanded coverage of browser developer tools for debugging and managing network connections and data.

❯❯ Updated page design makes it easier to follow steps and locate important information to use as a study guide or
reference book.

Features
Each chapter in JavaScript, Seventh Edition, includes the following features:

❯❯ Chapter Objectives: Each chapter begins with a list of the important concepts presented in the chapter. This list
provides you with a quick reference to the contents of the chapter as well as a useful study aid.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface xiii

❯❯ Figures and Tables: Plentiful full-color screenshots allow you to check your screen after each change. Tables
consolidate important material for easy reference.

❯❯ Code Examples: Numerous code examples throughout each chapter are presented in any easy-to-read font.

❯❯ Key Terms: The first use of key terms are printed in bold and orange font to draw your attention to important
definitions.

These elements provide additional helpful information on specific techniques and concepts.Note

These boxes provide guidance for navigating the world of work.

Skills at Work   

These boxes highlight guidelines for real- world implementation of various topics.

Best Practices   

These boxes explain principles underlying the subject of each chapter or section.

Programming Concepts   

These notes highlight common mistakes that a new programmer might make with the tasks and
concepts introduced in the chapter and provide suggestions for locating and fixing those errors.

Common
Mistakes

❯❯ Quick Check: Several Quick Checks are included in each chapter. These Quick Checks, consisting of two to
five questions, help ensure you understand the major points introduced in the chapter. Appendix C (provided
online) gives answers to each chapter’s Quick Check questions.

❯❯ Summary: These brief overviews revisit the ideas covered in each chapter, providing you with a helpful study
guide.

❯❯ Key Terms List: These lists compile all new terms introduced in the chapter, creating a convenient reference
covering a chapter’s important concepts.

❯❯ Review Questions: At the end of each chapter, a set of twenty review questions reinforces the main ideas
introduced in the chapter. These questions help you determine whether you have mastered the concepts
presented in the chapter.

❯❯ Hands-On Projects: Although it is important to understand the concepts behind every technology, no amount
of theory can improve on real-world experience. To this end, each chapter includes four detailed Hands-On
Projects that provide you with practice implementing technology skills in real-world situations. Each project is a
standalone project, giving you a wide variety of topics and difficulty levels.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Prefacexiv

❯❯ Debugging Challenge: Each chapter includes one Debugging Challenge project in which you are given code that
contains errors preventing it from running or running correctly. Here you can practice the important skill of
interpreting other people’s code and repairing it.

❯❯ Case Projects: These end-of-chapter projects are designed to help you apply what you have learned to open-
ended situations, both individually and as a member of a team. They give you the opportunity to independently
synthesize and evaluate information, examine potential solutions, and make decisions about the best way to
solve a problem.

MindTap
In addition to the readings, the MindTap includes the following:

❯❯ Course Orientation: Custom videos and readings prepare students for the material and coding experiences they
will encounter in their course.

❯❯ Coding Snippets: These short, ungraded coding activities are embedded in the MindTap Reader and provide
students an opportunity to practice new programming concepts “in-the-moment”. The coding Snippets help
transition the student from conceptual understanding to application of JavaScript code.

Instructor and Student Resources
Additional instructor and student resources for this product are available online. Instructor assets include an Instruc-
tor’s Manual, Solutions and Answer Guide, Solutions Files, Teaching Online Guide, PowerPoint® slides, and a test bank
powered by Cognero®. Student assets include data sets for the Hands-On Projects and Case Projects. Sign up or sign
in at www.cengage.com to search for and access this product and its online resources.

Read This Before You Begin
The following information will help you prepare to use this textbook.

Data Files
To complete the steps, exercises, and projects in this book, you will need data files that have been created specifically
for this book. The data files are available in the Student Resources. Note that you can use a computer in your school
lab or your own computer to complete the steps, exercises, and projects in this book.

Using Your Own Computer
You can use a computer in your school lab or your own computer to complete the chapters. To use your own computer,
you will need the following:

❯❯ A modern web browser, including the current versions of Chrome, Edge, Firefox, or Safari.

❯❯ A code-based HTML editor, such as Aptana Studio, Visual Studio Code, Notepad11, Eclipse, Adobe
Dreamweaver, or Atom.

❯❯ A web server (for Chapter 11) such as Apache HTTP Server or Microsoft Internet Information Services and PHP.
Appendix A contains instructions on how to install a web server and PHP.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface xv

Acknowledgements
Creating the Seventh Edition of JavaScript has truly been a team effort. Special thanks to Michelle Ruelos Cannistraci,
Mary Convertino, Tran Pham, Erin Griffin, and Troy Dundas at Cengage, to developmental editor Deb Kaufmann, and to
quality assurance and technical editor Danielle Shaw. Thanks also to the production team of copyeditors, proofreaders,
and compositors at SPi Global.

And many thanks to the reviewers who provided valuable feedback: Thomas Brown, Forsyth Technical Community
College; Tonya Melvin Bryant, Coastal Carolina University; and Pranshu Gupta, DeSales University.

(Patrick): This book is dedicated to my special girls: Abbey, Nicola, Sonia, Catherine, and most of all, Joan.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1

JavaScript is a programming language that adds complex interactive features to a website. Among its many
applications, JavaScript can be used to validate data on web forms, generate new content in response to
user actions, and store data that will persist from one web session to the next. JavaScript is an increasingly
important tool for the website designer and programmer to create useful and powerful web applications.

This chapter introduces the basics of JavaScript and its role in developing interactive websites. You will
create a JavaScript program for use in a web page and explore browser tools for evaluating your code.

Exploring the JavaScript Language
Before discussing the details of JavaScript, this chapter will examine how JavaScript fits in with the develop-
ment of the web as the primary source of sharing content and commerce across the globe. JavaScript had its
origins in the mid-1990s with the creation of the World Wide Web or web, which was developed to share data
across a network of linked documents. In its early years, the web was primarily used for academic research
and did not require much more than the ability to share text and graphic images between researchers.

The business world quickly recognized that the web could be a powerful tool for online commerce
including the process of validating customer data. When JavaScript first appeared in 1995, it was used to
handle as much of that validation as possible to speed up customer transactions. But what is JavaScript
and how does it compare to other languages?

Chapter 1

When you complete this chapter, you will be able to:

❯❯ Explain the history of JavaScript and scripting languages and how each has been
developed for its current use

❯❯ Write content into a web page using JavaScript

❯❯ Add JavaScript code to a web page

❯❯ Create and apply JavaScript variables

❯❯ Work with event handlers within a web page

❯❯ Connect to an external JavaScript File

Introduction to
JavaScript

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 Introduction to JavaScript 2

Introducing Scripting Languages
In discussing computer languages, especially those associated with website design, this book focuses on three general
types of languages: programming languages, scripting languages, and markup languages.

A programming language is a set of instructions directing the actions of the computer or computer device. Before
these instructions can be performed, they need to be compiled, a process by which those instructions are transformed
into machine code that can be understood by the computer or computer device. The compiling is done by a program
called a compiler. Thus, before you can work with a programming language, you need to have a working environment
to build the code, test the code, and compile it. Examples of programming language include Java, C, C11, and C#. The
browser that interacts with the web was created and compiled using a programming language like C11. This book
will not examine those languages except in terms of how they might interact with JavaScript.

A scripting language belongs to a subcategory of programming languages that do not require compiling but instead
are run directly from a program or script. Scripting languages need to be interpreted, in which the code is read line-
by-line by an interpreter that scans the code for errors even as it runs. A JavaScript interpreter is built into every web
browser, so to create a JavaScript program you only need a text editor to write the code and a web browser to run it.
Examples of scripting languages include JavaScript, PHP, Perl, and Python.

Finally, a markup language is a language that defines the content, structure, and appearance of a document. Common
markup languages include HTML (Hypertext Markup Language) used to define the content and structure of your web
page and CSS (Cascading Style Sheets) used to define how that web page will appear on a specified device. This book
focuses on the connections between HTML and CSS, which define the content and appearance of your web pages, and
JavaScript, which provides tools for interacting with those pages (see Figure 1-1). These chapters assume that you
already possess a basic knowledge of HTML and CSS.

Figure 1-1 The roles of HTML, CSS, and JavaScript
in web development

HTML

Content and
structure

CSS

Layout and
design

JavaScript

Interactive features
and customized apps

JavaScript and ECMAScript
The version of JavaScript discussed in this book is not the same as the one introduced in 1995. Over the years the
scope and power of the language has grown to meet the needs of an ever-changing market that includes an increas-
ing variety of devices from desktop computers to mobile phones. Who determines what JavaScript is and how it will
develop is an important part of its story.

In the beginning, JavaScript was developed for the Netscape browser by the Netscape developer Brendan Eich. Shortly
thereafter, JavaScript was supported by Microsoft’s Internet Explorer browser in a slightly different form called JScript.
One major headache for developers in the late 1990s was reconciling the differences between JavaScript and JScript
as well as keeping up with the changes to the language as each browser sought to add features and tools the other
browser lacked. Unlike a programming language such as C, at the time there was no single set of governing standards
for JavaScript. Its growth was as unpredictable as the web itself.

Therefore in 1997, JavaScript was submitted to the European Computer Manufacturers Association (ECMA) as a pro-
posal for a standardized scripting language that would work across a wide range of devices and browsers. A technical
committee composed of developers from the major browser manufacturers was tasked with the goal of developing

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exploring the JavaScript Language 3

a set of standards for the language. The specification for this scripting language is called ECMAScript or ECMA-262.
JavaScript is just one implementation of the ECMAScript standard, but it is the most important.

Every year a different version or edition of ECMAScript is released. Within a few years of release, most browsers will
implement the changes in that edition, so while web programmers need to keep apprised of the changes in the most
recent ECMAScript edition, they also need to write their code to conform to current browsers and older browser ver-
sions. Figure 1-2 describes the most recent editions of ECMAScript at the time of this writing.

You can do a search on the web for the current support of different ECMAScript editions by desktop and
mobile browsers.Note

ECMAScript Edition Date Issued Features

  6th Edition (ES6) June 2015 Added new syntax for complex applications, included iterators and for . . . of loops, arrow functions,
variable declarations using let and const

  7th Edition (ES7) June 2016 Added block-scoping of variables, exponentiation operator, and support for asynchronous execution

  8th Edition (ES8) June 2017 Added support for async/await constructions

  9th Edition (ES9) June 2018 Included rest/spread operators for variables, asynchronous iteration, and additions to regular expressions

10th Edition (ES10) June 2019 Added features to object prototypes and changes to Array sorting

11th Edition (ES11) June 2020 Added an optional object chaining operator for array and functions

Figure 1-2 Editions of ECMAScript

The DOM and the BOM
Though they are often talked about as being identical, JavaScript is more than just ECMAScript. ECMAScript is the
scripting language, but it does not tell you how to interact with the contents of a website or the browser. The full
implementation of JavaScript is built on three foundations:

❯❯ ECMAScript, which is the core of the programming language, providing the syntax, keywords, properties,
methods, and general structure for writing code.

❯❯ The Document Object Model (DOM), which describes how to access the contents of the web page and user
actions within that page.

❯❯ The Browser Object Model (BOM), which describes how to access the features and behaviors of the browser
itself.

The Document Object Model and the Browser Object Model are examples of an Application Programming Interface
(API), which is a set of procedures that access an application such as a web page or a web browser. Just as the speci-
fications for ECMAScript have developed and changed through the years, the specifications for the DOM and the BOM
have also grown in response to the need for a robust and powerful scripting language for the web.

The specifications for the DOM are managed by the World Wide Web Consortium (W3C), the same group managing the
development of HTML and CSS. Figure 1-3 describes the different versions of the DOM that have been released over
the years. Note that the DOM is used by programming languages other than JavaScript.

Unlike the Document Object Model, there is no formal set of standards for the Browser Object Model. Each browser is
different and implements its own version of the BOM, but the BOM is largely the same from one browser to the next
because it is to everyone’s advantage to adhere to a common standard.

Now that you have had a short overview of JavaScript and its history, let’s turn to how JavaScript works with your
computer or mobile device and the computers that host the sites on the web you frequently visit.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 Introduction to JavaScript 4

Understanding Client/Server Architecture
To be successful in web development, you need to understand the basics of client/server architecture. There are many
definitions of the terms “client” and “server”. In traditional client/server architecture, the server is a device or applica-
tion from which a client requests information. A server fulfills a request for information by managing the request or
serving the requested information to the client—hence the term, “client/server.” A system consisting of a client and a
server is known as a two-tier system.

One of the primary roles of the client, or front end, in a two-tier system is the presentation of an interface to the user.
The user interface gathers information from the user, submits it to a server, or back end, then receives, formats, and
presents the results returned from the server. The main responsibilities of a server are usually data storage, manage-
ment, and communicating with external services. On client/server systems, heavy processing, such as calculations,
usually takes place on the server. As devices that are used to access web pages—such as computers, tablets, and
mobile phones—have become increasingly powerful, however, many client/server systems have placed increasing
amounts of the processing responsibilities on the client. In a typical client/server system, a client computer might
contain a front end that is used for requesting information from a database on a server. The server locates records
that meet the client request, performs some sort of processing, such as calculations on the data, and then returns the
information to the client. The client computer can also perform some processing, such as building the queries that
are sent to the server or formatting and presenting the returned data. Figure 1-4 illustrates the design of a two-tier
client/server system.

Figure 1-4 A two-tier client/server system

Server response

Client request

Client

Server

DOM Date Features

DOM Level 0 1995 Provided a basic interface to access the contents of a web page using the initial version of JavaScript

DOM Level 1 October 1998 Added a way of mapping the content of a web page to JavaScript keywords, functions, properties, and methods

DOM Level 2 December 2000 Added an interface to events occurring within the web page, the contents of CSS style sheets, and the ability to
transverse and manipulate the hierarchical structure of the web page content

DOM Level 3 April 2004 Added support for methods to load and save web documents, validate web forms, and provides the ability to work
with keyboard objects and events

DOM Level 4 November 2015 An ongoing “living standard” that is updated to reflect the events and actions occurring within the document model
based on the evolving needs of the market and mobile devices

Figure 1-3 Versions of the Document Object Model

The web is built on a two-tier client/server system, in which a web browser (the client) requests documents from a
web server. The web browser is the client user interface. You can think of the web server as a repository for web pages.
After a web server returns the requested document, the web browser (as the client user interface) is responsible for
formatting and presenting the document to the user. The requests and responses through which a web browser and
web server communicate occur via Hypertext Transfer Protocol (HTTP), which is the main system used on the web
for exchanging data. For example, if a web browser requests the URL http://www.cengage.com, the request is made
with HTTP because the URL specifies the HTTP protocol. The web server then returns to the web browser an HTTP
response containing the response header and the HTML for the Cengage home page.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exploring the JavaScript Language 5

After you start adding databases and other types of applications to a web server, the client/ server system evolves into
what is known as a three-tier client architecture. A three-tier client/server system—also known as a multitier client/
server system or n-tier client/server system—consists of three distinct pieces: the client tier, the processing tier, and
the data storage tier. The client tier, or user interface tier, is still the web browser. However, the database portion of
the two-tier client/server system is split into a processing tier and the data storage tier. The processing tier, or middle
tier, handles the interaction between the web browser client and the data storage tier. (The processing tier is also
sometimes called the processing bridge.) Essentially, the client tier makes a request of a database on a web server. The
processing tier performs any necessary processing or calculations based on the request from the client tier, and then
reads information from or writes information to the data storage tier. The processing tier also handles the return of any
information to the client tier. Note that the processing tier is not the only place where processing can occur. The web
browser (client tier) still renders web page documents (which requires processing), and the database or application
in the data storage tier might also perform some processing.

Two-tier client/server architecture is a physical arrangement in which the client and server are two
separate computers. Three-tier client/server architecture is more conceptual than physical, because the
storage tier can be located on the same server.

Note

Figure 1-5 A three-tier client/server system

Processing tier

Can be the same computer

Client tier

Handles user interface
display (the web browser)
and submits requests
to the processing tier

Handles interaction
between the web
browser client and the
data storage tier

Stores data in a database
and returns requests
presented by the
processing tier

Data storage tier

Figure 1-5 illustrates the design of a three-tier client/server system.

JavaScript and Client-Side Scripting
HTML was not originally intended to control the appearance of pages in a web browser. When HTML was first devel-
oped, web pages were static—that is, they couldn’t change after the browser rendered them. However, after the web
grew beyond a small academic and scientific community, people began to recognize that greater interactivity and bet-
ter visual design would make the web more useful. As commercial applications of the web grew, the demand for more
interactive and visually appealing websites also grew.

HTML could be used to produce only static documents. You can think of a static web page written in HTML as being
approximately equivalent to a printed book; you can read it or move around in it, but the content is fixed.

What JavaScript provides that HTML needed is client-side scripting in which the scripting language runs on a local
browser (on the client tier) instead of on a web server (on the processing tier). In this way, web pages can respond
dynamically to user actions without putting extra strain on the operations of the server.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 Introduction to JavaScript 6

Figure 1-6 How a web server processes a server-side script

web server

web server software

web server
returns HTML

Client requests
a PHP script

web browser

The scripting engine
within the web server
interprets and executes
the server-side scripting
code and translates the
results into HTML

Many people think that JavaScript is a simplified version of the Java programming language, or is
related to Java in some other way. However, the languages are entirely different. Java is an advanced
programming language that was created by Sun Microsystems and is considerably more difficult to
master than JavaScript. Although Java can be used to create programs that can run from a web page,
Java programs are usually external programs that execute independently of a browser. In contrast,
JavaScript programs always run within a web page and control the browser.

Note

For security reasons, the JavaScript programming language cannot be used outside of specific environments. The
most common environment where JavaScript is run is a web browser. For example, to prevent malicious scripts from
stealing information, such as your email address or the credit card information you use for an online transaction, or
from causing damage by changing or deleting files, JavaScript allows manipulation only of select files associated with
the browser, and then with strict limitations. Another helpful limitation is the fact that JavaScript cannot run system
commands or execute programs on a client. The ability to read and write cookies and a few other types of browser
storage is the only type of access to a client that JavaScript has. Web browsers, however, strictly govern their storage
and do not allow access to stored information from outside the domain that created it. This security also means that
you cannot use JavaScript to interact directly with web servers that operate at the processing tier. Although program-
mers can employ a few tricks (such as forms and query strings) to allow JavaScript to interact indirectly with a web
server, if you want true control over what’s happening on the server, you need to use a server-side scripting language.

Understanding Server-Side Scripting
Server-side scripting refers to programming using a scripting language that is executed from a web server. Some of the
more popular server-side scripting languages are PHP, ASP.NET, Python, and Ruby. One of the primary reasons for using
a server-side scripting language is to develop an interactive website that communicates with a database. Server-side
scripting languages work in the processing tier and have the ability to handle communication between the client tier
and the data storage tier. At the processing tier, a server-side scripting language usually prepares and processes the
data in some way before submitting it to the data storage tier. Some of the more common uses of server-side scripting
languages include shopping carts, search engines, discussion forums, and multiplayer games.

Without JavaScript, a server-side scripting language can’t access or manipulate the user’s web browser. In fact, a server-
side scripting language cannot run on a client tier at all. Instead, a server-side scripting language exists and executes
solely on a web server, where it performs various types of processing or accesses databases. When a client requests a
server-side script, the script is interpreted and executed by the scripting engine within the web server software. After
the script finishes executing, the web server software translates the results of the script (such as the result of a calcu-
lation or the records returned from a database) into HTML, which it then returns to the client. In other words, a client
will never see the serverside script, only the HTML that the web server software returns from the script. Figure 1-6
illustrates how a web server processes a server-side script.

Should You Use Client-Side or Server-Side Scripting?
An important question in the design of any client/server system is deciding how much processing to place on the client
and how much to place on the server. In the context of website development, you must decide whether to use client-
side JavaScript or a server-side script. This is an important consideration that can greatly affect the performance of

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Writing a JavaScript Program 7

your program. In some cases, the decision is simple. If you want to control the web browser, you must use JavaScript.
If you want to access a database on a web server, you must use a server-side script. However, there are tasks that
both languages can accomplish, such as validating forms and manipulating cookies. Furthermore, both languages can
perform the same types of calculations and data processing.

A general rule of thumb is to allow the client to handle the user interface processing and light processing, such as data
validation, but have the web server perform intensive calculations and data storage. This division of labor is especially
important when dealing with clients and servers over the web. Unlike with clients on a private network, it’s not pos-
sible to know in advance the computing capabilities of each client on the web. You cannot assume that each client
(browser) that accesses your client/server application (website) has the necessary power to perform the processing
required by an application. For this reason, intensive processing should be performed on the server.

Because servers are usually much more powerful than client computers, your first instinct might be to let the server
handle all processing and only use the client to display a user interface. Although you do not want to overwhelm cli-
ents with processing they cannot handle, it is important to perform as much processing as possible on the client for
several reasons:

❯❯ Distributing processing among multiple clients creates applications that are more powerful, because the
processing power is not limited to the capabilities of a single computer. Client devices—including computers,
tablets, and smartphones—become more powerful every day. Thus, it makes sense to use a web application to
harness some of this power and capability. A web application is a program that is executed on a server but is
accessed through a web page loaded in a client browser.

❯❯ Local processing on client computers minimizes transfer times across the Internet and creates faster
applications. If a client had to wait for all processing to be performed on the server, a web application could be
painfully slow over a low-bandwidth Internet connection.

❯❯ Performing processing on client computers decreases the amount of server resources needed by application
providers, decreasing costs for infrastructure and power use.

Now that you have seen how JavaScript fits within the client/server structure, in the next section you will explore how
to start applying JavaScript to your own web pages.

Quick Check 1

1.	 How does a scripting language like JavaScript differ from a programming language like C#?

2.	 What are the three core foundations upon which JavaScript is built?

3.	 In client/server architecture, what is a client? What is a server?

Writing a JavaScript Program
Before you start writing JavaScript you must first choose an application in which to create your programs. You can
work with IDEs or code editors.

IDEs and Code Editors
You have a lot of choices for creating your own JavaScript programs. Like HTML and CSS, writing JavaScript code
requires only a basic text editor but you can also use an Integrated Development Environment (IDE) to manage all
of the facets of website development, including the writing and testing of JavaScript code. Popular IDEs include the
following:

❯❯ Microsoft Visual Studio (https://visualstudio.microsoft.com)

❯❯ Komodo IDE (https://www.activestate.com/products/komodo-ide)

❯❯ Aptana Studio (http://www.aptana.com)

❯❯ NetBeans (https://netbeans.org)

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 Introduction to JavaScript 8

If you find an IDE to be either too expensive (though there are very good free IDEs available on the web) or containing
too much overhead for your projects, you might be better suited with a code editor that simply manages the writing
of HTML, CSS, and JavaScript code within a graphical interface. These editors include a number of features that make
coding easier, including numbering the lines of code in a document and color coding text based on meaning—for
instance, displaying JavaScript keywords in one color and user-defined text and values in another. Several good free
code editors are available online, including the following:

❯❯ Visual Studio Code (https://code.visualstudio.com)

❯❯ Notepad11 (https://notepad-plus-plus.org)

❯❯ Brackets (http://brackets.io)

❯❯ Atom (https://atom.io)

The HTML, CSS, and JavaScript code samples displayed in this book are based on a code editor that uses color to
distinguish different parts of the code. Your code editor might use a different coloring scheme, but that will not affect
the code because HTML, CSS, and JavaScript are saved as basic text.

In this chapter, you will add JavaScript code to a web page for Tinley Xeriscapes, a landscaping company that special-
izes in plants that need minimal watering. A designer has created a new layout for the company’s website, and they
would like you to incorporate JavaScript to enhance the functionality of one of the site’s pages. Figure 1-7 shows a
preview of the completed web page incorporating the functionality you will create in this chapter.

Figure 1-7 Completed Tinley Xeriscapes Plants page using JavaScript
U.S. Department of Agriculture

Rollover effect
created with a CSS

pseudo-class
Picture changes to

show a plant when its
name is clicked in the

list on the left

Open the HTML file for this web page now.

To open the Tinley Xeriscapes page:

1.	 Use your code editor to go to the js01 c chapter folder of your data files.

2.	 Open the js01_txt.html file in your code editor.

3.	 Within the head section of the HTML file, enter your name and the date in the Author and Date lines.

4.	 Save the file as js01.html.

Next, begin writing the code of your first JavaScript program.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Writing a JavaScript Program 9

The script Element
JavaScript can be added to a web page by embedding the code within the following script element:

<script>

 statements

</script>

where statements are the individual lines of code in the JavaScript program. The following script element contains
a single JavaScript statement displaying an alert window with the text message “Hello World”:

<script>

 window.alert("Hello World");

</script>

When the browser encounters a script element, it stops loading the page and processes the statements enclosed
within the script. In this case, the browser would stop loading the page to display the “Hello World” message. Once the
script is run, the browser continues to process the remaining content in the HTML file. Add a script element now
within the opening and closing <figcaption> tags in the HTML file for the Tinley Xeriscapes page.

To add the script element to the page:

1.	 Scroll down to the article element in the js01.html file within your code editor.

2.	 After the opening <figcaption> tag, type:

<script>

</script>

indenting the opening and closing tags to make your code easier to read. See Figure 1-8.

Figure 1-8 Adding a script element

The script element encloses
JavaScript code within an HTML �le

3.	 Save your changes to the file.

Next you will learn general rules for writing statements in JavaScript.

JavaScript Statements
The individual lines of code, or statements, that make up a JavaScript program in a document are contained within the
script element. The following script contains a single statement that writes the text “Plant choices” to a web browser
window, using the write() method of the Document object, which you will study shortly:

document.write("<p>Plant choices</p>");

Notice that the preceding statement ends in a semicolon. Many programming languages, including C11 and Java,
require you to end all statements with a semicolon. JavaScript statements are not required to end in semicolons. Semi-
colons are strictly necessary only when you want to separate statements that are written on a single line. However, it is
considered good JavaScript programming practice to end every statement with a semicolon whether strictly required
or not. This is the convention that will be used in this book.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

